首页> 外文OA文献 >The ADMM penalized decoder for LDPC codes
【2h】

The ADMM penalized decoder for LDPC codes

机译:aDmm惩罚解码器的LDpC码

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Linear programming (LP) decoding for low-density parity-check (LDPC) codesproposed by Feldman et al. is shown to have theoretical guarantees in severalregimes and empirically is not observed to suffer from an error floor. Howeverat low signal-to-noise ratios (SNRs), LP decoding is observed to have worseerror performance than belief propagation (BP) decoding. In this paper, we seekto improve LP decoding at low SNRs while still achieving good high SNRperformance. We first present a new decoding framework obtained by trying tosolve a non-convex optimization problem using the alternating direction methodof multipliers (ADMM). This non-convex problem is constructed by adding apenalty term to the LP decoding objective. The goal of the penalty term is tomake "pseudocodewords", which are the non-integer vertices of the LP relaxationto which the LP decoder fails, more costly. We name this decoder class the"ADMM penalized decoder". In our simulation results, the ADMM penalized decoderwith $\ell_1$ and $\ell_2$ penalties outperforms both BP and LP decoding at allSNRs. For high SNR regimes where it is infeasible to simulate, we use aninstanton analysis and show that the ADMM penalized decoder has better high SNRperformance than BP decoding. We also develop a reweighted LP decoder usinglinear approximations to the objective with an $\ell_1$ penalty. We show thatthis decoder has an improved theoretical recovery threshold compared to LPdecoding. In addition, we show that the empirical gain of the reweighted LPdecoder is significant at low SNRs.
机译:Feldman等人提出的用于低密度奇偶校验(LDPC)码的线性编程(LP)解码。证明在某些情况下具有理论上的保证,并且从经验上没有观察到存在错误底限。但是,在低信噪比(SNR)下,观察到LP解码的误码性能比置信传播(BP)解码差。在本文中,我们力求在低SNR的情况下改善LP解码,同时仍具有良好的高SNR性能。我们首先提出一种新的解码框架,该框架通过尝试使用乘数交替方向方法(ADMM)解决非凸优化问题而获得。通过向LP解码目标添加附加项来构造此非凸问题。惩罚项的目的是使LP解码器无法通过的“伪码字”(即LP松弛的非整数顶点)变得更昂贵。我们将此解码器类称为“ ADMM惩罚式解码器”。在我们的模拟结果中,在所有SNR处,具有$ \ ell_1 $和$ \ ell_2 $惩罚的ADMM惩罚解码器均优于BP和LP解码。对于难以模拟的高SNR体制,我们使用了安斯坦顿分析,结果表明,与BP解码相比,ADMM惩罚性解码器具有更好的高SNR性能。我们还开发了一种线性加权的LP解码器,它使用对目标的线性近似,且损失$ \ ell_1 $。我们证明,与LP解码相比,该解码器具有更高的理论恢复阈值。此外,我们表明,在低信噪比时,重新加权的LP解码器的经验增益非常重要。

著录项

  • 作者

    Liu, Xishuo; Draper, Stark C.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号